

Preeclampsia screening: time for implementation

María del Mar Gil

Comunidad de Madrid

Prediction of preeclampsia

High risk factors

- Previous preeclampsia
- Chronic renal disease
- Chronic hypertension
- Diabetes mellitus
- SLE or APS

Moderate risk factors

- First pregnancy
- Age <u>></u> 40 yrs
- Body mass index > 35 kg/m²
- Inter-pregnancy interval > 10 yrs
- Family history of preeclampsia

Prediction of preeclampsia

Determine *prior* risk: •Maternal characteristics •Medical / obstetric history

Measure biomarkers
Express as MoMs
Modify *prior* risk

Estimate posterior risk

The Fetal Medicine Foundation

Uterine artery Doppler

Campbell S, Diaz-Recasens J, Griffin DR, Cohen-Overbeek TE, Pearce JM, Willson K, Teague MJ. New Doppler technique for assessing uteroplacental blood flow. Lancet **1983**; 1:675-7.

Soothill PW, Nicolaides K, Bilardo KM, Hackett GA, Campbell S. Uteroplacental blood velocity resistance index and umbilical venous pO2, pCO2, pH, lactate, and erythroblast count in **growth retarded fetuses**. Fetal Therapy **1986**; 1:176-9.

Lees C, Parra M, Missfelder-Lobos H, Morgans A, Fletcher O, Nicolaides KH. Individualized risk assessment for **adverse pregnancy outcome** by uterine artery Doppler at 23 weeks. Obstet Gynecol **2001**; 98:369-73

Yu CK, Khouri O, Onwudiwe N, Spiliopoulos Y, Nicolaides KH. Prediction of **pre-eclampsia** by uterine artery Doppler imaging: relationship to gestational age at delivery and **small-for-gestational age**. Ultrasound Obstet Gynecol **2008**; 31:310-313.

Smith GC, Yu CK, Papageorghiou AT, Cacho AM, Nicolaides KH. Maternal uterine artery Doppler flow velocimetry and the risk of **stillbirth**. Obstet Gynecol **2007**; 109:144-151.

Poon LC, Volpe N, Muto B, Yu CK, Syngelaki A, Nicolaides KH. Second-trimester uterine artery Doppler in the prediction of **stillbirths**. Fetal Diagn Ther **2013**; 33:28-35.

The Fetal Medicine Foundation

1991 - 2016 Prediction of PE at 11-13 w

Maternal risk factors

- Age: every 10 years > 30 y
- Weight every 10 kg > 70 kg
- Black and South Asian race
- Previous preeclampsia
- Mother had preeclampsia
- Conception by IVF
- Chronic hypertension
- Diabetes mellitus
- Autoimmune: SLE, APS

- Kaminopetros et al. Uterine artery Doppler at 11-13 vs. 20-24 weeks. Fetal Diagn Ther 1991
- Martin et al. Uterine artery Doppler at 11-13 weeks predicts PE. UOG 2001
- Plasencia et al. Uterine artery Doppler at 11-13 weeks predicts PE. UOG 2007
- Akolekar et al. Placental growth factor at 11-13 weeks predicts PE. UOG 2008
- Poon et al. Mean arterial pressure at 11-13 weeks predics PE. Fetal Diagn Ther 2012
- Akolekar et al. Competing risks model to predict PE. Fetal Diagn Ther 2013
- O' Gorman et al. Combined test for early prediction of PE. Am J Obstet Gynecol 2016

Validation of FMF algorithm

SPAIN:	Murcia, Granada, Tenerife
BELGIUM:	Brussels
ITALY:	Milan
GREECE:	Athens
ENGLAND:	6 NHS hospitals
Companies:	PerkinElmer, Astraia, Viewpoint

ULTRASOUND in Obstetrics & Gynecology

O'Gorman N, Wright D, Poon LC, et al. Accuracy of competingrisks model in screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks' gestation. Ultrasound Obstet Gynecol **2017**; 49: 751–5.

The Fetal Medicine Foundation

Validation of FMF algorithm

Screening for Preeclampsia

- 7 NHS hospitals in England
- Routine screening at 11-13 w
- Non-intervention study
- 16,747 singleton pregnancies
- Comparison of NICE vs. FMF
- Coordinated by UCL CCTU

National Institute For Health Research Efficacy and Mechanism Evaluation Programme

ULTRASOUND in Obstetrics & Gynecology

Tan *et al.* Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet Gynecol **2018** doi: 10.1002/uog.19039.

Prediction of PE at <37 w

Preeclampsia • total: n = 1,770 (2.9%) • <37 w: n = 493 (0.8%)

Method of screening	DR %
History	45
+ MAP	51
+ MAP, PAPP-A	56
+ MAP, UTPI	68
+ MAP, UTPI, PAPP-A	68
+ MAP, PLGF	66
+ MAP, UTPI, PLGF	75
+ MAP, UTPI, PLGF, PAPP-A	75

Tan et al. Screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks' gestation. 2018

Prediction of preterm preeclampsia:

Selection of risk cut-off

The Fetal Medicine Foundation

Lessons from screening for T21

Detection rate 90% for screen +ve rate 5%

At risk cut-off of 1 in 100 DR 86%, Screen +ve 2.7%

Lessons from screening for T21 Screening by MAP, UTPI, PLGF

Dick		White		Black		
	SDD	DR of PE		CDD	DR of PE	
Cul-OII	SFK	<32 w	<37 w	JFK	<32 w	<37 w
1 in 20	1.5	42	31	10.0	89	73
1 in 50	4.8	73	56	21.0	95	85
1 in 70	7.0	81	65	26.6	98	88
1 in 100	10.4	88	69	34.0	100	92
1 in 150	15.6	94	81	43.4	100	96
1 in 200	20.2	94	83	50.4	100	98

Tan et al. Screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks' gestation. 2018

Algorithm validation / adjustment in Spain Spanish Multicenter Study: PREVAL

8,000 patients

Prevention of preterm preeclampsia

Prevention of preeclampsia

Bed rest and dietary manipulations

The rate of PE is not reduced by:

•Bed rest or restriction of physical activity.

•Restriction of salt intake.

•Supplementation with magnesium, zinc, folate, vitamins C and E or fish oil.

The rate of PE is halved by:

•Dietary calcium (1.2 - 2.5 g/d) in women with low calcium intake (<600 mg/d).

1985

Prevention of PE: aspirin

Prevention of pre-eclampsia by early antiplatelet therapy

Beaufils M, Uzan S, Donsimoni R, Colau JC, Lancet 1985

• RCT: 102 patients at high risk of PE and / or FGR

Aspirin 150 mg from 12 weeks (A) vs no treatment (B)

The Fetal Medicine Foundation

Prevention of PE: aspirin

14 different definitions of PE

The Fetal Medicine Foundation

Prevention of PE: aspirin

Virgen de la Arrixaca, Murcia, Spain San Cecilio Hospital, Granada, Spain Hospiten Sur, Tenerife, Spain

Chu Brugmann Brussels, Belgium Attikon University Hospital, Greece Ospedale Maggiore Policlinico, Italy

King' s College Hospital, UK Medway Maritime Hospital, UK Lewisham University Hospital, UK North Middlesex Hospital, UK Southend University Hospital, UK Homerton University Hospital, UK

Statistical analysis: D Wright, A Wright

Companies: Perkin Elmer, Astraia, Viewpoint

DOSE: 150 mg / day Aspirin resistance: 30% at 81mg and 5% at 160 mg Caron et al: J Obstet Gynaecol Can 2009;31:1022-7

START: 12 weeks FINISH: 36 weeks Avoid potential neonatal hemorrhage

TIME:Bed timeRCT aspirin 100 mg vs placebomorning, afternoon, nightAspirin at night: lower PE, FGR, PTB or IUDAyala DE, Ucieda R, Hermida RC: Chronobiol Int 2013; 30:260-279

OUTCOME: Preterm PE

STUDY POPULATION: High-risk group defined by FMF algorithm

Prevention of preterm-PE

Prevention of preterm-PE

Prevention of preeclampsia

The NEW ENGLAND JOURNAL of MEDICINE

Rolnik DL, Wright D, Poon L, *et al.* Aspirin versus placebo in pregnancies at high risk of preterm preeclampsia. N Engl J Med **2017**;377:613-22.

Effect of compliance

Wright D *et al.* ASPRE trial: influence of compliance on beneficial effect of aspirin in prevention of preterm preeclampsia. Am J Obstet Gynecol **2017**; 17: 31097.

Compliance: 86% of women took <u>></u>80% of tablets 71% of women took <u>></u>90% of tablets

Effect of maternal factors

<30 years Maternal age >30 years BMI <25 Kg/m² >25 Kg/m² Black **Racial origin** White Yes Smoking No Yes FH of PE No **Obstetrical history** Nulliparous Multip without PE Multip with PE **Chronic hypertension *** Yes No All

* 5 / 49 vs. 5 / 61

10

Poon *et al.* ASPRE trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am J Obstet Gynecol **2017**; 217: 585.e1-585.e5.

Effect of maternal factors and compliance

Poon *et al.* ASPRE trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am J Obstet Gynecol **2017**; 217: 585.e1-585.e5.

ASPRE NICE +ve but FMF -ve

	High risk factors	Moderate-risk factors
NICE +ve / FMF +ve	8.7 (6.9-10.9)	4.9 (3.5-6.8)
NICE +ve / FMF -ve	0.65 (0.2-1.7)	0.42 (0.2-0.9)
RR (95% CI)	0.08 (0.03-0.2)	0.09 (0.04-0.2)

34,573 singleton pregnancies at 11-13 w: preterm-PE 239 (0.7%)

Poon *et al.* ASPRE trial: incidence of preterm preeclampsia in patients fulfilling ACOG and NICE criteria according to risk by the FMF algorithm. Ultrasound Obstet Gynecol **2018**; 1002/uog.19019.

Prevention of preeclampsia

RR, Random, 95%CI

Roberge S, Bujold E, Nicolaides K. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol **2017**;pii: S0002-9378(17)32326-8.

Meta-analysis 16 trials: 18,907 participants

Prevention of preterm-PE

RR, Random, 95%CI

Roberge S, Bujold E, Nicolaides K. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol **2017**;pii: S0002-9378(17)32326-8.

Meta-analysis 16 trials: 18,907 participants

Aspirin and placental abruption

<100 mg, ≤	16w <		1.11	(0.52, 2.36)	
<100 mg, >	•16w ·	>	1.32	(0.73, 2.39)	
≥100 mg, ≤	16w 🗢		0.62	(0.31, 1.26)	
≥100 mg, >	16w		2.08	(0.86, 5.06)	
		Sı	ubgrou p	ıp difference =0.04	
0.001	0.1 Aspirin	1 Co	10 ontrol	1000	

RR, Random, 95% CI

Roberge S, Bujold E, Nicolaides KH. Meta-analysis on the effect of aspirin use for prevention of preeclampsia on placental abruption and antepartum hemorrhage. Am J Obstet Gynecol **2018**; pii: S0002-9378(17)32812-0

Meta-analysis 20 trials: 12,585 participants

First trimester prediction and prevention of preterm-PE

Cost effectiveness

Admission to NICU

Wright *et al.* Aspirin for Evidence-Based Preeclampsia Prevention trial: effect of aspirin on length of stay in the neonatal intensive care unit. Am J Obstet Gynecol **2018**, doi: 10.1016/j.ajog.2018.02.014.

babies admitted to NICU

Cumulative number of

ASPRE

project

Admission to NICU

Babies born at <32 weeks' gestation contributed to 83% of total length of stay in NICU

ASPRE Admission to NICU

Admission to NICU

At 2 y: death or disabilities 22-31 w: 19% 32-34 w: 2% 5,567 live births at 22-34 w France 2011 *Pierrat et al. BMJ 2017;358:j2338*

Birth	Death <5 y	Cerebral palsy	Impaired work capacity
23-27w	80%	9.1%	10.6%
28-30w	40%	6.0%	8.2%
31-33w	11%	1.9%	4.2%
34-36w	2.3%	0.3%	2.4%
≥37w	0.6%	0.1%	1.7%

867,692 live births Norway 1967-1983 Moster et al. NEJM 2008;359:262

Prevention of SGA

SGA with PE <34w	── 0.29; 0.03 to 2.48		
SGA with PE <37w	→ 0.41; 0.10 to 1.63	SGA <32 w	RR (95% CI)
SGA with PE <u>></u> 37w →	• 0.71; 0.18 to 2.82		
		<10th centile	0.268 (0.113 to 0.636)
SGA without PE <34w →	→ 0.53; 0.16 to 1.77	<5th centile	0.280 (0.117 to 0.668)
SGA without PE <37w	→ 1.01; 0.42 to 2.46	<3rd centile	0.294 (0.122 to 0.703)
SGA without PE ≥37w ⊢	← 1.00; 0.60 to 1.66		
.02 .05 .1 .2 .5	1 2 5		
Odds Ratio with	99% CI		

The NEW ENGLAND JOURNAL of MEDICINE Rolnik DL, Wright D, Poon L, *et al.* Aspirin versus placebo in pregnancies at high risk of preterm preeclampsia. N Engl J Med **2017**;377:613-22.

The Fetal Medicine Foundation

Prevention of SGA

Proportion of SGA in PE

SGA neonates <5th centile born at <32 w:

- 40% are from pregnancies with PE
- 60% have risk for PE of >1 in 100
- 72% (33-88%) reduction in risk by aspirin

First trimester screening for PE and use of aspirin in the high-risk group could reduce the incidence of early-SGA by about 40%.

Tan *et al.* Prediction and prevention of small for gestational age neonates: evidence from SPREE and ASPRE. Ultrasound Obstet Gynecol **2018**. doi: 10.1002/uog.19077.

The Fetal Medicine Foundation

•	
- Reduction in PE <32 w 90	%
- Reduction in PE <34 w 80	%
- Reduction in PE <37 w 65	%
- Reduction in abruption 30	%*
- Reduction in SGA <32 w 40	%
- Reduction in LOS in NICU 65	%

Screening for PE in the 2nd and 3rd trimesters

The Fetal Medicine Foundation

Combined screening for PE at 22 weeks Objective: define pregnancy management

Gallo et al. AmJOG 2016;214:619 Tsiakkas et al. AmJOG 2016;215:87 Panaitescu et al. UOG 2018; in press

Screening for PE at 22 w

- Select cut-off for PE <32 w to include 95% of cases of PE <32 w

- Select cut-off for PE <36 w to include 90% of cases of PE at 32-36 w

High-risk group: Very small

High / intermediate risk group: Small

Low-risk group: Very big - Contains very few cases of PE <37w The Fetal Medicine Foundation

Combined screening for PE at 22 weeks Objective: define pregnancy management

Gallo et al. AmJOG 2016;214:619 Tsiakkas et al. AmJOG 2016;215:87 Panaitescu et al. UOG 2018; in press

Combined screening at 22 w Prediction of PE at <32 w

The Fetal Medicine Foundation

Combined screening for PE at 22 weeks Objective: define pregnancy management

Gallo et al. AmJOG 2016;214:619 Tsiakkas et al. AmJOG 2016;215:87 Panaitescu et al. UOG 2018; in press

Combined screening at 22 w Prediction of PE at 32-36 w

Risk cut-off 1 in 150 *Screen positive rate 10%

Method of screening	DR
History	62%
+ MAP	79%
+ MAP, PLGF (sFLT) *	78%
+ MAP, UTPI *	90%
+ MAP, UTPI, PLGF *	91%
+ MAP, UTPI, PLGF, sFLT *	90%

The Fetal Medicine Foundation

Combined screening for PE at 22 w

Combined screening at 22 w can individualize patient care and identifies:

- A small group (1%) requiring monitoring at 24-32 w
- An intermediate group (10%) for reassessment at 32 w
- A large group (90%) at low-risk of developing PE <36 w

Preeclampsia screening: time for implementation

- 11 13 weeks \rightarrow We are ready
 - Reduction on maternal and fetal morbi-mortality
 - Reduction in costs

20 – 22 weeks \rightarrow More evidence is coming

Inversion of pyramid of care

👐 Comunidad de Madrid

María del Mar Gil mgil@torrejonsalud.com